Synthesis and Characterization of 2-Ferrocenyl-4,4,5,5-tetramethyl-2-imidazolin-1-oxyl 3-Oxide and Its CT-Complex with DDQ

Yosuke NAKAMURA, Noboru KOGA, and Hiizu IWAMURA*

Department of Chemistry, Faculty of Science,

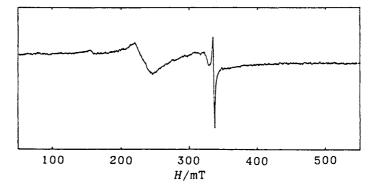
The University of Tokyo, Bunkyo-ku, Tokyo 113

A ferrocene derivative carrying a nitronyl-nitroxide radical was synthesized and its CT salt with DDQ was prepared. There are two S=1/2 spins, ferrocenium ion and nitronyl-nitroxide radical, on the cationic part of the CT-salt. From the temperature dependence of magnetic susceptibility data it is concluded that the interaction between them is antiferromagnetic $(2J \approx -50 \text{ cm}^{-1})$.

In recent years there has been much interest in the design of molecular ferromagnets, and several approaches have been made. 1-4) them takes advantage of the charge-transfer (CT) salts, which are composed of S=1/2 donors (D^{\dagger}) and acceptors (A $^{-}$). When D has a degenerate pair of filled HOMO as in the $e_{2\mathrm{g}}$ orbitals of ferrocene, the configurational admixing of a virtual triplet due to D^{2+} should lead to ferromagnetic coupling of the spins on D^{+} and $A^{-}.^{2}$ Modifying such a scheme, we attempted to construct CT-complexes between a donor (D) carrying a stable radical (R) and an appropriate acceptor (A), as illustrated in Scheme 1. If the spin of R couples with that of D[†] either ferro- or antiferromagnetically, the coupling with A. should lead to addition or incomplete cancellation of the total spin, thus showing ferrimagnetic behavior. For the purpose of accomplishing this scheme, 2-ferrocenyl-4,4,5,5-tetramethyl-2-imidazolin-1-oxyl 3-oxide $(\underline{1})$ was synthesized, and its CT salt $(\underline{2})$ with 2,3-dichloro-5,6-dicyano-p-benzoquinone (DDQ) was prepared. The magnetic behavior of 2 is reported in this article.

Scheme 1.

Radical $\underline{1}$ was synthesized by the modified Ullman's method⁵⁾ as shown in Scheme 2. The purification of $\underline{1}$ by column chromatography on silica-gel and recrystallization yielded dark-green needles (mp 150 °C) which were stable in the air at room temperature. Cyclic voltammetry of $\underline{1}$ showed two reversible waves at 1.07 and 1.41 V vs. Ag/AgI (CH₃CN) corresponding to the oxidation of ferrocene moiety and nitronyl-nitroxide radical, respectively. The former is higher than the oxidation potential of ferrocene (0.88 V) measured under similar conditions, indicating the electron-withdrawing effect of the nitronyl-nitroxide radical. The latter is also higher than those of 2-phenyl- and 2-(1-pyrenyl)- derivatives (1.23 V). Judging from the oxidation potential, the oxidation of $\underline{1}$ into ferrocenium ion is expected to require a fairly strong acceptor.


CHO
$$K_2CO_3$$
, $+NHOH \cdot H_2SO_4$ Fe N PbO_2 Fe N CH_2Cl_2 , r.t., 15 min N

Scheme 2.

As an acceptor for $\underline{1}$, DDQ was selected, because its reduction potential is located between the two oxidation potentials of $\underline{1}$. Mixing of a solution of $\underline{1}$ in n-hexane with that of DDQ in $\operatorname{CH}_2\operatorname{Cl}_2$ under an argon atmosphere gave a brown solid ($\underline{2}$), which was found by elemental analysis to consist of equimolar $\underline{1}$ and DDQ. All attempts to obtain single crystals have been unsuccessful. Measurement of UV-Vis and ESR spectra of $\underline{2}$ in solution showed that nitronyl-nitroxide radical remained intact without any oxidation and decomposition. A CN-stretching IR absorption was observed at 2216 cm $^{-1}$ in good agreement with that of K $^+$ DDQ $^-$. Consequently it is concluded that $\underline{2}$ is a CT-salt made of the ferrocenium ion of $\underline{1}$ and DDQ anion. DDQ anions are considered to form diamagnetic dimers, $(\operatorname{DDQ})_2^{2^-}$, as in other similar cases. On the other hand, there are two S=1/2 spins, ferrocenium ion and nitronyl-nitroxide radical, on the cationic part of $\underline{2}$. ESR spectra and magnetic susceptibility were measured to support the interpretation and clarify their mode of coupling.

ESR spectra of $\underline{2}$ were measured between 4 K and room temperature. The spectrum obtained at 5 K is shown in Fig. 1. A broad signal was observed around 200 mT, and another signal due to a radical around g=2 was very weak. The former was considered to be attributed to a triplet state due to

the interaction between ferrocenium ion and nitronyl-nitroxide radical with a g value between g=2 and 4, and the latter to a slightly remaining impurity. The broad signal shifted to higher magnetic field as the temperature was increased.

The magnetic susceptibility was measured between 2 and 300 K by the

Fig. 1. ESR spectrum of CT salt $\underline{2}$.

Faraday method. The gram susceptibility (χ) and the square of effective magnetic moment ($\mu_{\rm eff}^2$) are shown as a function of temperature in Fig. 2 (a) and (b), respectively. Above 100 K the susceptibility of 2 obeyed a Curie-Weiss law with a Weiss constant of -22 K. Below 100 K the χ vs. T curve gradually deviated from the Curie-Weiss law, and reached a broad maximum at 47 K. After the maximum, the susceptibility fell down as the temperature was decreased toward 10 K, then increased again. The last increase in χ is probably due to independent 1/2 spins of the impurity, which was estimated to be less than 4-5% of the total spins, rather than the ferromagnetic interaction between the cations. The $\mu_{\rm eff}^2$ value at room temperature, $10.2\,\mu_{\rm B}^2$, is close to the sum of that of nitronylnitroxide (3.0 $\mu_{\rm B}^2$) and ferrocenium ion (6-7 $\mu_{\rm B}^2$). The reference of the sum of the sum of that of nitronylnitroxide (3.0 $\mu_{\rm B}^2$) and ferrocenium ion (6-7 $\mu_{\rm B}^2$). The reference of the sum of that of nitronylnitroxide (3.0 $\mu_{\rm B}^2$) and ferrocenium ion (6-7 $\mu_{\rm B}^2$).

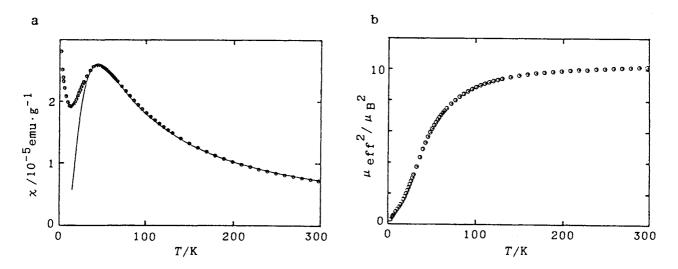


Fig. 2. The temperature dependence of (a) gram susceptibility, χ , and (b) the square of effective magnetic moment, μ_{eff}^2 , for $\underline{2}$. The solid curve in (a) represents a calculated one for 2J=-50 cm⁻¹.

constant as the temperature was lowered from 300 to 150 K, but decreased rapidly below 100 K. This indicates that the interaction between nitronyl-nitroxide radical and ferrocenium ion is antiferromagnetic. On the basis of the ST model, $^{8)}$ the energy gap between the ground singlet and the excited triplet (=-2J) is estimated to be about 50 cm⁻¹ by fitting the experimental values to theoretical curves as in Fig. 2(a).

In conclusion, ferrocenium ion (D⁺) and nitronyl-nitroxide (R) on $\underline{2}$ are not independent but antiferromagnetically coupled. In this case, anions of DDQ (A⁻) did not participate in the magnetism of $\underline{2}$ as a result of their dimerization. Studies to find appropriate paramagnetic A⁻ to realize the model shown in scheme 1 are in progress.

References

- H. Iwamura, Pure Appl. Chem., <u>59</u>, 1595 (1987); J. B. Torrance, S. Oostra, and A. Nazzal, Synth. Metal, <u>19</u>, 709 (1987); E. Dormann, M. J. Nowak, K. A. Williams, R. O. Angus, Jr., and F. Wudl, J. Am. Chem. Soc., <u>109</u>, 2594 (1987); L. Y. Chiang, D. C. Johnston, D. P. Goshorn, and A. N. Bloch, J. Am. Chem. Soc., <u>111</u>, 1925 (1989); T. Sugimoto, Y. Misaki, T. Kajita, T. Nagatomi, Z. Yoshida, and J. Yamauchi, Angew. Chem., Int. Ed. Engl., <u>27</u>, 1078 (1988); A. Caneschi, D. Gatteschi, R. Sessoli, and P. Ray, Acc. Chem. Res., <u>22</u>, 392 (1989); O. Kahn, Angew. Chem., Int. Ed. Engl., <u>24</u>, 834 (1985).
- 2) H. M. McConnell, Proc. R. A. Welch Found. Chem. Res., <u>11</u>, 144 (1967).
- 3) R. Breslow, Pure Appl. Chem., <u>54</u>, 927 (1982); R. Breslow, B. Jaun, R. Q. Klutz, and C.-Z. Xia, Tetrahedron, <u>38</u>, 863 (1982).
- 4) J. S. Miller, A. J. Epstein, and W. M. Reiff, Chem. Rev., <u>88</u>, 201 (1988); J. S. Miller, A. J. Epstein, and W. M. Reiff, Acc. Chem. Res., <u>21</u>, 114 (1988); J. S. Miller, J. C. Calabrese, H. Rommelmann, S. R. Chittipeddi, J. H. Zhang, W. M. Reiff, and A. J. Epstein, J. Am. Chem. Soc., <u>109</u>, 769 (1987).
- 5) E. F. Ullman, J. H. Osiecki, D. G. B. Boocock, and R. Darcy, J. Am. Chem. Soc., <u>94</u>, 7049 (1972).
- 6) J. S. Miller, P. J. Krusic, D. A. Dixon, W. M. Reiff, J. H. Zhang, E. C. Anderson, and A. J. Epstein, J. Am. Chem. Soc., <u>108</u>, 4459 (1986).
- 7) W. H. Morrison, Jr., S, Krogsrud, and D. N. Hendrickson, Inorg. Chem., <u>12</u>, 1998 (1973); D. N. Hendrickson, Y. S. Sohn, and H. B. Gray, ibid., <u>10</u>, 1559 (1971).
- 8) W. D. Horrocks, J. Am. Chem. Soc., <u>87</u>, 3779 (1965).

(Received October 9, 1990)